欢迎访问一路通光缆(广州)有限公司网站!
一路通LOGO
一站式光纤光缆制造企业
  • 中国南方电网
  • 中国移动
  • 中国中铁
  • 指定供应商
全国服务热线
188-0201-3521
4新闻资讯
您的位置:首页  ->  新闻资讯  -> 技术支持

光分路器原理

文章出处:技术支持 责任编辑:一路通光缆(广州)有限公司 发表时间:2023-12-12
  

光分路器:适用于将一根光纤信号分解为多路光信号输出

光分路器的作用:①把一道主光源通过分路器把光分成1-N份的光路出去;②是把1-N份的光路通过分路器合成为1束主光源回收!

工作原理:在单模光纤传导光信号的时候,光的能量并不完全是集中在纤芯中传播,有少量是通过靠近纤芯的包层中传播的,也就是说,在两根光纤的纤芯足够靠近的话,在一根光纤中传输的光的模场就可以进入另外一根光纤,光信号在两根光纤中得到重新的分配

技术实现:目前有两种类型光分路器可以满足分光的需要:一种是传统光无源器件厂家利用传统的拉锥耦合器工艺生产的熔融拉锥式光纤分路器(Fused Fiber Splitter),一种是基于光学集成技术生产的平面光波导分路器(PLC Splitter),这两种器件各有优点,用户可根据使用场合和需求的不同,合理选用这两种不同类型的分光器件,以下对两种器件作简单介绍,供参考。

熔融拉锥光纤分路器(Fused Fiber Splitter)

熔融拉锥技术是将两根或多根光纤捆在一起,然后在拉锥机上熔融拉伸,并实时监控分光比的变化,分光比达到要求后结束熔融拉伸,其中一端保留一根光纤(其余剪掉)作为输入端,另一端则作多路输出端。目前成熟拉锥工艺一次只能拉1×4以下。1×4以上器件,则用多个1×2连接在一起。再整体封装在分路器盒中。

这种器件主要优点有(1)拉锥耦合器已有二十多年的历史和经验, 许多设备和工艺只需沿用而已, 开发经费只有PLC的几十分之一甚至几百分之一(2)原材料只有很容易获得的石英基板, 光纤, 热缩管, 不锈钢管和少些胶, 总共也不超过一美元. 而机器和仪器的投资折旧费用更少,1×2、1×4等低通道分路器成本低。(3)分光比可以根据需要实时监控,可以制作不等分分路器。

主要缺点有(1)损耗对光波长敏感,一般要根据波长选用器件,这在三网合一使用过程是致命缺陷,因为在三网合一传输的光信号有1310nm、1490nm、1550nm等多种波长信号。

(2)均匀性较差,1X4标称最大相差1.5dB左右,1×8以上相差更大,不能确保均匀分光,可能影响整体传输距离。(3)插入损耗随温度变化变化量大(TDL)(4)多路分路器(如1×16、1×32)体积比较大,可靠性也会降低,安装空间受到限制。

平面光波导功率分路器(PLC Optical Power Splitter)

平面光波导技术是用半导体工艺制作光波导分支器件,分路的功能在芯片上完成,可以在一只芯片上实现多达1X32以上分路,然后,在芯片两端分别耦合封装输入端和输出端多通道光纤阵列。

这种器件的优点有(1)损耗对传输光波长不敏感,可以满足不同波长的传输需要。(2)分光均匀,可以将信号均匀分配给用户。(3)结构紧凑,体积小(博创科技 1×32 尺寸:4×7×50mm),可以直接安装在现有的各种交接箱内,不需特殊设计留出很大的安装空间。 (4)单只器件分路通道很多,可以达到32路以上。(5)多路成本低,分路数越多,成本优势越明显。 主要缺点有:(1)器件制作工艺复杂,技术门槛较高,目前芯片被国外几家公司垄断,国内能够大批量封装生产的企业也只有博创科技等很少几家。(2)相对于熔融拉锥式分路器成本较高,特别在低通道分路器方面更处于劣势。

总结

1、两种器件的主要参数对比总结如下:

这两种器件在性能价格方面各有优势,两种工艺技术也都在不断升级,不断克服各自的缺点。拉锥式分路器正在解决一次性拉锥数量不多和均匀性不良等问题;光波导分路器也在降低成本方面作不懈努力,目前两种器件在1X8以上成本已相差无几,随着分路通道的增加平面波导型分路器价格更优。 2、如何选择器件 如何选用这两种器件,关键要从使用场合和用户的需求方面考虑。在一些体积和光波长不是很敏感的应用场合,特别是分路少的情况下,选用拉锥式光分路器比较实惠,如独立的数据传输选用1310nm拉锥式分路器,电视视频网络可选择1550nm的拉锥式分路器;在三网合一、FTTH等需要多个波长的光传输而且用户较多的场合下,应选用光波导分路器。 目前,国内多数公司进行FTTH试验网多采用拉锥式分路器,这是由于许多设计人员对PLC器件还不熟悉,国内也很少有公司生产这种器件。日本和美国FTTH真正商业运行的市场几乎全部采用平面光波导分路器。

定做光分路器时需要提供哪些技术要求?

(1)指定用熔融拉锥型(光纤耦合型)光分路器。这种光分路器生产工艺比较简单,具有较好的性能,在CATV系统中得到了广泛的应用。

(2)确定结构形式。在机房里一般用19寸机架式、FC/APC或SC/APC接头。如用在树型网络,需要把分路器安装熔接在接续盒内,则要求分路器不带机壳,不带接头,尺寸大约为80mm*60mm*15mm(不含引出光纤)。

(3)确定中心波长和带宽。波长类型分为单一波长1310nm、单一波长1550nm、宽带型(1310nm&1550nm)。带宽类型分为窄带型±20nm、宽带型±40nm。一般情况下,选择单一波长、窄带型的光分路器,既能满足使用,又能节省成本。

(4)要求附加损耗的上限如下:

分路数 2 3 4 5 6 7 8 9 10 11 12 16

附加损耗 0.2 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1.0 1.2

(5) 确定分光比,精确到小数点后一位,如82.3% 。

波分比:光分路器将1路光信号分为N路信号,N=2叫光二分路器,N=4叫光四分路器,依此类推。一般1∶N 的光分路器均由一分为二和一分为三的光分路器组合而成。光分路器将一路光信号按不同功率比例分成多路的光信号输出,实际的光缆传输干线中,常用光分路器将一路光信号分成强度不等的几路输出,光强较大的一路传输到较远距离,光强较弱的一路传输到较近距离,使各个光节点的光功率近似相等。

OMSP Optical Multiplex Section Protect 光复用段保护

这种技术是只在光路上进行1+1保护,而不对终端设备进行保护。在发端和收端分别使用1×2光分路器或光开关,在发送端对合路的光信号进行分离,在接收端对光信号进行选路。光复用段保护只有在独立的两条光缆中实施才有实际意义。

光耦合器与光复用器

光耦合是对同一波长的光功率进行分路或合路。通过光耦合器,我们可以将两路光信号合成到一路上,如光耦合器示意图(a)所示,P1和P2两路光信号经耦合器后变成了一路输出P3。同时,光耦合器还可以对光进行分路,如耦合器示意图(b)所示,输入的光信号Pin经过介质膜的反射和折射,分成了两路信号,当然,这两路信号的功率比是可以调节的。

光复用器可以把不同波长的信号复合注入到一根光纤中;相反地,解复用器则把复合的多波长信号解复用,把不同波长的信号分离出来。

介绍一:工作原理和主要技术指标

在光纤通信系统中,最早商用的DWDM模块是由多个三端口的介质膜滤波器(TFF)串联而成,但是当信道数大于16时,基于TFF技术的DWDM模块因损耗太大,不能满足应用需求。阵列波导光栅(AWG)应运而生,成为32通道以上DWDM模块的主要技术途径。

AWG是以平面光路(PLC)技术制作的器件,其基本结构如图1所示,由输入波导、输入星形耦合器、阵列波导、输出星形耦合器和输出波导阵列五部分组成。输入的DWDM信号,由第一个星形耦合器分配到各条阵列波导中,阵列波导的长度依次递增ΔL,对通过的光信号产生等光程差,其功能相当于一个光栅,在阵列波导的输出位置发生衍射,不同波长衍射到不同角度,经过第二个星形耦合器,聚焦到不同的输出波导中。

图1. AWG基本结构

为了更直观的理解AWG的工作原理,我们首先来分析凹面反射式光栅和罗兰圆的结构和原理,如图2所示,凹面光栅的曲率半径为R=2r,罗兰圆的半径为r,二者内切且罗兰圆通过光栅中心。通过简单的光路分析和一定的近似可知,罗兰圆上任一点发出的光,经凹面光栅衍射之后仍聚焦在罗兰圆上,不同衍射级次对应不同衍射角,满足衍射条件:

(1)

图2. 凹面反射式光栅和罗兰圆结构

AWG的输入/输出星形耦合器采用类似凹面反射式光栅和罗兰圆的结构,如图3所示,输入/输出波导的端口位于罗兰圆的圆周上,阵列波导位于凹面光栅的圆周上。

a)

图3. a)输入星形耦合器,b)输出星形耦合器

输入星形耦合器与输出星形耦合器成镜像关系,输入波导发出的光信号经阵列波导衍射,不同波长聚焦到不同输出波导;图4中罗兰圆上C点发出的光信号经凹面光栅反射衍射,不同波长聚焦到罗兰圆上的不同点。二者完全等效,差别只在于后者是反射式光栅,而前者是透射式光栅。对于前者,我们也可以理解为图3(b)中波导C发出的光信号,经阵列波导反射衍射并聚焦到不同输出波导中。

图4. 凹面反射式光栅中的衍射

AWG的衍射公式与凹面光栅略有不同:

(2)

其中da为阵列波导中心间距,nc为星形耦合器区域的等效折射率,na为阵列波导的等效折射率,m为衍射级次。从式(2)可以看到,AWG与普通光栅有着相同的衍射能力,可用于DWDM信号的复用/解复用。

从(2)式可以看到,同一波长的不同衍射级次,将衍射为不同角度,聚焦到不同的输出波导中,如图5(a)所示,其中主衍射级次的光功率最强,次级衍射光功率迅速衰减。在满足(3)式的情况下,不同波长的主衍射级次将进入相同的输出波导,造成串扰,Δλ称为AWG的自由光谱范围(FSR),如图5(b)所示,为避免串扰,FSR应大于需要复用/解复用的信号谱宽。

(3)

一个典型的AWG传输谱线如图6所示,其主要技术指标有插入损耗、损耗均匀性、通带起伏、偏振相关损耗(PDL)、通带宽度、相邻通道隔离度、非相邻通道隔离度等,分别如图7(a)、图5(a)、图7(b-f)所示。

图6. AWG的传输谱线

a)插入损耗              b)通带起伏

c)PDL                   d)通带宽度

e)相邻通道隔离度         f)非相邻通道隔离度

图7. AWG的主要技术指标

一路通光缆(广州)有限公司 版权所有 粤ICP备20018457号 [BMAP] [GMAP] 【百度统计】 【后台管理粤公网安备 44011802000567号
技术
咨询
商务
服务
方案
配置

手机

许先生(技术总监)

188 0201 3521

微信

二维码

加微信好友

小程序

二维码

扫一扫查看小程序

邮箱

电子邮箱

3041384512@qq.com